Fourier Analysis
April 16,2024
Review.
Steady state heat equation on the upper nalf plane.

$u=U(x, y)$ temperation distribution

$$
\left\{\begin{array}{l}
\Delta u=\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0, \quad x \in \mathbb{R}, \quad y>0 \\
u(x, 0)=f(x), \quad x \in \mathbb{R}
\end{array}\right.
$$

Tho (Uniqueness)
Let $u \in C^{2}\left(\mathbb{R} \times \mathbb{R}_{+}\right) \cap C\left(\overline{\mathbb{R} \times \mathbb{R}_{+}}\right)$.
Suppose u satisfies that

$$
\left\{\begin{array}{lll}
\Delta U=0 & \text { on } & \mathbb{R} x \mathbb{R}_{+} \\
U(x, 0)=0 & \text { on } \mathbb{R}
\end{array}\right.
$$

Moreover suppose that $U(x, y) \rightarrow 0$ as $|x|+y \rightarrow \infty$.
Then $U(x, y) \equiv 0$ on $\mathbb{R} \times \mathbb{R}_{+}$.

In last class, we proved the above uniqueness result by assuming the following.

Lemma 2 (Mean value property of harmonic function).
Let Ω be an open set of \mathbb{R}^{2}. Let $u \in C^{2}(\Omega)$ and suppose $\Delta u=0$ on Ω. Suppose
$B_{R}\left(x_{0}, y_{0}\right) \subset \Omega$ where

$$
B_{R}\left(x_{0}, y_{0}\right)=\left\{(x, y) \in \mathbb{R}^{2}:\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2} \leqslant R^{2}\right\}
$$

Then $\forall \quad 0<r<R$,

$$
U\left(x_{0}, y_{0}\right)=\frac{1}{2 \pi} \int_{0}^{2 \pi} u\left(x_{0}+r \cos \theta, y_{0}+r \sin \theta\right) d \theta
$$

Pf. Define

$$
U(r, \theta)=u\left(x_{0}+r \cos \theta, y_{0}+r \sin \theta\right)
$$

$$
\text { for } \quad 0 \leqslant r<R, \quad 0 \leqslant \theta<2 \pi
$$

Since $\Delta U=0$, it follows that

$$
\Delta U=0 \quad \text { on } \quad 0 \leqslant r<R, 0 \leqslant \theta<2 \pi
$$

Recall that

$$
\Delta U=\frac{\partial^{2} U}{\partial r^{2}}+\frac{1}{r} \frac{\partial U}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} U}{\partial \theta^{2}}
$$

Hence

$$
r^{2} \frac{\partial^{2} U}{\partial r^{2}}+r \frac{\partial U}{\partial r}+\frac{\partial^{2} U}{\partial \theta^{2}}=0
$$

So $\quad r \frac{\partial}{\partial r}\left(r \frac{\partial U}{\partial r}\right)+\frac{\partial^{2} U}{\partial \theta^{2}}=0$
Define $f(r)=\frac{1}{2 \pi} \int_{0}^{2 \pi} U(r, \theta) d \theta$

$$
\begin{aligned}
r \frac{d}{d r}\left(r \frac{d f(r)}{d r}\right) & =\frac{1}{2 \pi} \int_{0}^{2 \pi} r \frac{\partial}{\partial r}\left(r \frac{\partial U}{\partial r}\right) d \theta \\
& =-\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{\partial^{2} U}{\partial \theta^{2}} d \theta
\end{aligned}
$$

$$
\begin{aligned}
& =-\left.\frac{1}{2 \pi} \quad \frac{\partial U}{\partial \theta}\right|_{0} ^{2 \pi} \\
& =0 \quad\left(\text { since } \frac{\partial U}{\partial \theta}\right. \text { is } \\
& 2 \pi \text {-parodic in } \theta)
\end{aligned}
$$

Hence

$$
\frac{d}{d r}\left(r \frac{d f}{d r}\right) \equiv 0 \quad \text { on } \quad 0<r<R
$$

So $\quad r \frac{d f}{d r} \equiv$ Const on $(0, R)$
Notice that as $r \rightarrow 0, \frac{d f}{d r}$ is bod, hence

$$
r \frac{d f}{d r}=0
$$

It implies $f \equiv$ const on $0<r<R$
By continuity $\quad f(r) \equiv f(0)$.
That is

$$
\begin{aligned}
\frac{1}{2 \pi} \int_{0}^{2 \pi} \underbrace{U(r, \theta)}_{L} d \theta & =\frac{1}{2 \pi} \int_{0}^{2 \pi} U(0, \theta) d \theta \\
u\left(x_{0}+r \cos \theta, y_{0}+r \sin \theta\right) & =\frac{1}{2 \pi} \int_{0}^{2 \pi} u\left(x_{0}, y_{0}\right) d \theta \\
& =U\left(x_{0}, y_{0}\right) .
\end{aligned}
$$

85.3 Poisson summation formula.

The 3 (Poisson summation formula).
Let $f \in M(\mathbb{R})$. Assume that $\hat{f} \in M(\mathbb{R})$.
Let $F(x)=\sum_{n \in \text { 衣 }} f(x+n)$.
Then

$$
F(x)=\sum_{n \in \mathbb{F}} \hat{f}(n) e^{2 \pi i n x}
$$

In particular,

$$
\sum_{n \in \mathbb{Z}} f(n)=\sum_{n \in \mathbb{Z}} \hat{f}(n)
$$

Pf. Since $f \in M(\mathbb{R}), \exists$ a constant $c>0$
such that

$$
|f(x+n)| \leqslant \frac{c}{1+(x+n)^{2}}
$$

It follows that

$$
\begin{gathered}
\sum_{n=-N}^{N} f(x+n) \rightarrow F(x) \quad \text { on any compact set, } \\
\text { as } N \rightarrow \infty
\end{gathered}
$$

So F is cts on \mathbb{R}, and it is 1 -periodic

Now let us calculate the Fomier coefficients of F.

$$
\begin{aligned}
\hat{F}(n) & =\int_{0}^{1} F(x) e^{-2 \pi i n x} d x \\
& =\int_{0}^{1} \sum_{k=-\infty}^{\infty} f(x+k) \cdot e^{-2 \pi i n x} d x
\end{aligned}
$$

By the (DCT) ∞

$$
\begin{aligned}
& =\sum_{k=-\infty}^{\infty} \int_{0}^{1} f(x+k) e^{-2 \pi i n x} d x \\
& =\sum_{k=-\infty}^{\infty} \int_{k}^{k+1} f(y) e^{-2 \pi i n(y-k)} d y
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{k=-\infty}^{\infty} \int_{k}^{k t 1} f(y) \cdot e^{-2 \pi i n y} d y \\
& =\int_{-\infty}^{\infty} f(y) e^{-2 \pi i n y} d y \\
& =\hat{f}(n)(\leqslant \text { Fomier transform } \\
& \text { of } f)
\end{aligned}
$$

That is, $\hat{F}(n)=\hat{f}(n), n \in z$.
Since $\hat{f} \in M(\mathbb{R})$,

$$
\sum_{n=-\infty}^{\infty}|\hat{f}(n)|<\infty .
$$

It follows that

$$
\sum_{n=-\infty}^{\infty}|\hat{F}(n)|<\infty
$$

Recall \hat{F} is the Fourier coefficient of F on $[0,1]$.

So

$$
F(x)=\sum_{n=-\infty}^{\infty} \widehat{F}(n) e^{2 \pi i n x} \text { on }[0,1] \text {. }
$$

That is,

$$
F(x)=\sum_{n=-\infty}^{\infty} \widehat{f}(n) e^{2 \pi i n x}
$$

Example 1. Let $f(x)=J_{y}(x)=\frac{1}{\pi} \frac{y}{x^{2}+y^{2}}$ on \mathbb{R}, where $y>0$.
Recall that

$$
\hat{f}(\xi)=e^{-2 \pi / \xi \mid y} .
$$

Then $f, \hat{f} \in \mathcal{M}(\mathbb{R})$. By the Poisson Summation formula,

$$
\begin{aligned}
\sum_{n=-\infty}^{\infty} f(x+n) & =\sum_{n=-\infty}^{\infty} \hat{f}(n) e^{2 \pi i n x} \\
& =\sum_{n \in Z_{2}} e^{-2 \pi / n / y} e^{2 \pi i n x}
\end{aligned}
$$

$$
=\operatorname{Pr}(2 \pi x)
$$

where $r=e^{-2 \pi y}$ and

$$
P_{r}(\theta)=\sum_{n=-\infty}^{\infty} r^{|n|} e^{i n \theta}=\frac{1-r^{2}}{1-2 r \cos \theta+r^{2}}
$$

Hence

$$
\sum_{n \in \mathbb{Z}} \rho_{y}(x+n)=p_{e^{-2 \pi|y|}}(2 \pi x)
$$

Relation between the Poisson kernel on the upper half plane and the poisson kernel on the unit disc.

Example 2. Define the Theta function
$\Theta: \mathbb{R}_{+} \rightarrow \mathbb{R}$ by

$$
\Theta(s)=\sum_{n \in Z} e^{-\pi n^{2} s}
$$

Then Θ satisfies the following identity

$$
\Theta(s)=\frac{1}{\sqrt{s}} \Theta\left(\frac{1}{s}\right) \text {. }
$$

Pf. Fix $s>0$. Set $f(x)=e^{-\pi x^{2} s}$.
Notice that

$$
e^{-\pi x^{2}} \xrightarrow{\mathcal{F}} e^{-\pi \xi^{2}}
$$

So

$$
\begin{aligned}
f(x)=e^{-\pi(\sqrt{s} \cdot x)^{2}} \xrightarrow{\sigma_{f}} & \frac{1}{\sqrt{s}} e^{-\pi\left(\frac{\xi}{\sqrt{s}}\right)^{2}} \\
= & \frac{1}{\sqrt{s}} e^{-\pi \xi^{2} / s}
\end{aligned}
$$

That is, $\hat{f}(\xi)=\frac{1}{\sqrt{s}} \cdot e^{-\pi \xi^{2} / s}$.

Check: $f, \hat{f} \in M(\mathbb{R})$.
By Poisson summation formula,

$$
\sum_{n \in \mathbb{Z}} f(n)=\sum_{n \in \mathbb{Z}} \hat{f}(n)
$$

Hence

$$
\sum_{n \in \mathbb{Z}} e^{-\pi n^{2} s}=\sum_{n \in \mathbb{Z}} \frac{1}{\sqrt{s}} e^{-\pi \frac{n^{2}}{s}}
$$

i.e.
$\Theta(s)=\frac{1}{\sqrt{s}} \Theta\left(\frac{1}{s}\right)$.

Example 3. Relation between the heat kernels on the line and the circle:

$$
P_{t}(x)=\frac{1}{\sqrt{4 \pi t}} e^{-\frac{x^{2}}{4 t}}, x \in \mathbb{R}, t>0
$$

(Heat kernel on the real line)

Notice that

$$
\hat{H}_{t}(\xi)=e^{-4 \pi^{2} \xi^{2} t}
$$

Applying the Poisson summation formula to $\mathscr{P}_{t}(x)$ gives

$$
\begin{aligned}
& \sum_{n \in \mathbb{Z}} \mathscr{H}_{t}(x+n)=\sum_{n \in \mathbb{Z}}{\widehat{\mathscr{P}_{t}}(n) e^{2 \pi i n x}}=\underbrace{}_{n=\mathbb{\sum _ { n \in Z }} e^{-4 \pi^{2} n^{2} t} e^{2 \pi i n x}} \\
&=: H_{t}(x)
\end{aligned}
$$

(heat kernel on the circle)
Hence

$$
H_{t}(x)>0 \text { for all } x \in \mathbb{R}
$$

